“Manhattan Beach Project”
Mission and Vision

Mission Statement

“This to reverse aging by 2033 – and to deliver affordable extreme health and life-extension to Humanity shortly thereafter.”

Vision Statement

“Leading the field in controlling human aging – thus helping save thousands of lives… every day”
• Integrate Biotechnology, Nanotechnology and Artificial Intelligence for the specific purpose of controlling aging.

• Assemble the world’s leading researchers in a focused effort, much like the World War II ending Manhattan Project. Ours, the humanitarian "Manhattan Beach Project," will end suffering and death from aging.

 (The concept and scientific road map were initiated at Maximum Life Foundation’s 1st International Anti-Aging Scientific Conference, held in Manhattan Beach, Calif.) in 2000 and completed in 2009. www.ManhattanBeachProject.com.

• We will continue to build our group of world-class Anti-Aging, Nanomedicine and Artificial Intelligence scientists, as well as proven management and advisors to rush breakthrough technologies to market.
This idea is at the heart of our strategy – “to live long enough to live as long as you want”

This is how: Three Bridges

• Reprogram Your Biochemistry (starting now, with the help of our experts);
• Biotech Advances: [2–15] years including Stem Cell, Genetic, Regenerative and Nutraceutical technologies including Damage Repair;
• Nanotech Advances: [15–25] years - the ultimate bridge

This is because medical advances are accelerating… and with adequate funding, we can reach a point where will be adding more than one year to your potential lifespan each calendar year… in less than 14 years!
MaxLife Aggressive Reversal Program

Projected Lifespan 85

Reprogram Biochemistry +3 years

Escape Velocity Reached by 2026

MaxLife Technologies +17 years

Age Reversal Reach by 2033

Hypothetical 75 Year Old

According to statistics, if you are 65 years old, you will die in 16 years* (and your declining years are usually miserable). But, if the Manhattan Beach Project receives funding… you might enjoy an open-ended youthful future.

* About half the 65 year olds will die before age 81 and half after.
Strategies

• To fund and develop technologies with growth or value creation potential in the fields of anti-aging, medical-nanotechnology and artificial intelligence

• Build strategic alliances with major institutions, universities and companies to expand MaxLife’s brand and establish joint venture opportunities

• Proactively expand our technologies into international markets by leveraging MaxLife’s expertise and network

• Through continued research, ultimately make extreme life extending technologies affordable to everyone
MaxLife’s Core Competencies

Market Leadership
First mover advantage as trend setter in the Anti-Aging and Life-Extension fields

Network
MaxLife’s Advisory Boards are comprised of some of the top Anti-Aging Scientists and Doctors in the world, as well as top business, marketing and finance minds

Scientific Qualifications
Extensive network of researchers and technologists
Core team includes many of the world’s preeminent anti-aging scientists (genetics, genomics, stem cell, gerontology, nanotechnology, artificial intelligence)

Management
Visionary entrepreneurial leadership
Team with seasoned management and industry experience
Diverse expertise in finance and corporate restructuring
Most of our resources will be dedicated to developing technologies in the fields of Molecular Biology, Organ and Tissue Regeneration, Gene Therapy, Post Genetics, Nutraceuticals, Pharmaceuticals and Therapeutic and Diagnostic Devices.
A portion of our focus will be in the field of Nano-medicine, using nanotechnology-based therapies and devices, leading to medical nanorobotics (robots the size of blood cells [~7 microns])—some acting as artificial leukocytes to eliminate pathogens, others directly repairing DNA and other molecular damage in individual tissue cells while interfacing with extracellular devices.
We intend to fund companies that are striving to create human-level artificial intelligence (AI) that can be harnessed to diagnose illnesses, monitor patients and provide healthcare and research cures for diseases.

With AI, doctors will be able do these things faster, cheaper and more accurately than would otherwise be possible using natural (human) intelligence alone.
Services

Once a technology has been given the green light by the Board of Directors, it will be funded and actively monitored and advised as necessary, including:

- recruiting management
- formulating operating strategies
- formulating intellectual property strategies
- providing professional marketing services
- assisting in financial planning and
- establishing benchmarks for management to meet

We will choose technologies which meet our Mission objectives and meet our business criteria such as producing a viable product, IP, or technology which can be independently marketed, spun off in an IPO or merger or sold to Big Pharma or Biotech.
MaxLife will help develop products and technologies such as:

- Tissue Engineering
- Genetic Engineering
- Stem Cell Therapy
- Breakthrough Nutraceuticals
- Accumulated Aging Induced Damage Repair
- Genome Reengineering
- General/Strong Artificial Intelligence
- Nanomedicine
Genomics

• One technology capitalizes on a scientific breakthrough and proven scientific and drug discovery techniques to develop therapeutics and diagnostics that will extend life and improve quality of life. The strategy is based on over 20 years of research.

• The scientist was the first person in the world to deliberately and significantly postpone aging in experimental organisms. His animals are more active for a longer period of time, are more resistant to stress, have more sex, and are generally more healthy and vital.

• He discovered over 400 aging-related genes in his animals. Of these, about 70% are common to humans.
Areas of Technological Focus

Stem Cell Signaling Factor Therapy

• Rather than using stem cells for therapeutics, a new proven stem cell technology captures the signals (lipids and proteins for example) that stem cells give off to activate surrounding cells to a more youthful state.

• This technology will be tested to treat various injuries and diseases including aging. Continued success could lead to the benefits of stem cell therapy with a much simpler approach and without ethical concerns.
Replacement Stem Cell Therapy

- This technology isolates the best stem cells and replaces the least viable stem cells with millions of copies of the most pristine ones. That means weakened immune systems could be strengthened, damaged hearts and other organs could have better internal repair mechanisms, and bodies could be made more resistant to cancer and other diseases.

- Extensions of this technology could enhance elderly stem cells beyond the capabilities of young adult or even infant stem cells.
Areas of Technological Focus

Genome Reengineering

• MaxLife identified a technology that re-engineers genes to be resistant or even immune to disease and aging. We will essentially write biological code, much like computer scientists write code. (Biotech will soon become information technology)

• The scientist believes it will take about 2,000 man years to write code for longevity to solve the majority of the aging problem. He also projects it will take tens of thousands of man years to reengineer the whole human genome. It would take about [1-2] years to train biotech undergrads or grad students to write the code. Therefore, 500 personnel might solve the majority of the challenge in about [5-6] years.
Areas of Technological Focus

SENS

• Strategies for Engineered Negligible Senescence offer a direct path to reverse much aging related damage before we learn to control the human aging process.

• **SENS** strategy is NOT to interfere with metabolism per se, but to repair or obviate the accumulating damage and thereby indefinitely postpone the age at which it reaches pathological concentrations.
Areas of Technological Focus

SENS

The 7 issues that cause aging and the 7 reversible technologies

• Cell loss and cell atrophy (Stem cells, growth factors, exercise)

• Nuclear [epi] mutations (only cancer mutations) (WILT, Whole-body Interdiction of Lengthening of Telomeres)

• Mutant mitochondria (Allotopic expression of 13 proteins)

• Cell senescence (Ablation of unwanted cells)

• Extracellular crosslinks (AGE-breaking molecules/enzymes)

• Extracellular junk (Phagocytosis; beta-breakers)

• Intracellular junk (Transgenic microbial hyrolases)
Artificial General Intelligence (AGI)

• The theory for a new kind of computer application (AGI) has been developed. This technology will allow computers to learn, think and respond like humans — they will exhibit REAL intelligence.

• Such intelligent systems do not yet exist — however, the required knowledge to build them does.

• AGI represents enormous commercial potential. AGI has the potential to put every anti-aging research project on the fast track.
Artificial General Intelligence (AGI)

To amplify the importance of AGI, here is a quote from Bill Gates — from a talk that he gave at MIT:

“If you invent a breakthrough in artificial intelligence, so machines can learn - that is worth 10 Microsofts”

Artificial General Intelligence (AGI)

MaxLife estimates that a working system could take less than 10 years and remain within MaxLife’s funding budget. MaxLife plans to invest in what it believes are two of the leading researchers’ technologies. Two years later, MaxLife could potentially have a fully trained PhD equivalent AGI doing research.

Imagine making nearly instant duplicates and unleashing 100,000 AGI researchers on any problem.
Nanotechnology

• Nanotechnology refers to the control of matter on a scale normally between [1-100] nanometers (a DNA double helix has a diameter of about 2 nanometers, 40,000 times smaller than a human hair).

• Nanomedicine is the medical application of Nanotechnology for the preservation and improvement of human health. It includes diverse areas such as drug delivery, biological enhancements, imaging and diagnostics and *in-vivo* therapies.
Areas of Technological Focus

Nanotechnology

• Artificial organic devices that incorporate biological motors or self-assembled DNA-based structures for a variety of useful medical purposes.

• Targeted anti-aging treatments which address each of the seven specific forms of cellular damage that produce pathologies leading to natural death.

• Within 20 years, medical nanorobots should begin to appear in the medical field.
Product Examples

Pending potential life-extending technologies

• A Nutraceutical is expected to be developed within the next 12 months which will slow the aging process; and within the following 20 years (less with more funding) the scientists expect to completely halt aging.

• Natural peptides with the ability to manipulate genes to do what we want them to do. For instance, expressing the genes that regulate aging… and treating or avoiding diseases by expressing genes that cause them.

• And more…
MaxLife Personal Longevity Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprogram Biochemistry</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nutraceuticals</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Genome Reengineering</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Escape Velocity*</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nanomedicine**</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

First X = "Insiders"
Second X = "Public"

* = Add more than 1 year for every additional year lived
** = Age Reversal
How Can This Happen So Fast?

• Rate of change is accelerating exponentially.

• Computational power of technology doubles every 12 months.

• Therefore, tools available to scientists in ten years could be 1,000 times more powerful than they are today and a billion times more powerful in 25 years.

• Example: 14 years to sequence HIV. Sequenced SARS in 31 days.

• This escapes our notice, because we have an intuitive linear perspective on the world.

• Thus our perception of the rate of change based on the past is not a reliable guide to the future.
How Can This Happen So Fast?

• Because of this exponential growth, the 21st century is projected to achieve \textbf{20,000} years of progress at the rate of progress we saw in 2000 – 1,000 times greater than we witnessed in the 20th century.

• 50% annual deflationary factor.

• This factor will continue to increase also.

• Research tools continue getting faster, more powerful and cheaper.

• Example: In 1990, it cost about $10 to sequence a base pair of DNA. Now it costs a fraction of a penny.

These are some of the reasons we can solve aging soon and inexpensively, in spite of the fact we haven’t even been able to cure cancer so far.

It’s an exciting new world!
Initial Budget

<table>
<thead>
<tr>
<th>Industry</th>
<th>Business</th>
<th>Annual Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics</td>
<td>Pharmaceuticals/Nutraceuticals</td>
<td>$7,000,000</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>Genome Reengineering</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>Nanotechnology</td>
<td>Nanomedicine</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>IT</td>
<td>Artificial General Intelligence</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>Regenerative Medicine</td>
<td>Stem Cell Signals</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Regenerative Medicine</td>
<td>Stem Cell Enhancement</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Genomics</td>
<td>Pharmaceuticals/Nutraceuticals</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Various</td>
<td>SENS</td>
<td>$6,000,000</td>
</tr>
<tr>
<td></td>
<td>Annual Budget Years 1-3</td>
<td>$30,500,000</td>
</tr>
<tr>
<td>Real Estate</td>
<td>Research Center</td>
<td>$6,000,000</td>
</tr>
<tr>
<td></td>
<td>Total 1st Year</td>
<td>$36,500,000</td>
</tr>
</tbody>
</table>
The initial budget can be ramped up to accelerate progress beyond projections.

The budget could be scaled back slightly in some, but not all disciplines with minimal delay in projections.

Beyond year 3, the genome engineering and nanomedicine budgets will increase substantially in order to meet projections.

Project can be funded beyond year 3 subject to certain milestones being met.
Milestone Funding

PHASE 1 - Year 3 Milestones

- **Genome Reengineering:** Recruited, trained and started first group of programmers to write biological code to enhance genomes.

- **AGI:** Positive earnings from one technology.

- **Genetics:** Commercialized first products.

- **Genomics:** Commercialized first products.

- **Nanomedicine:** Theoretical and experimental demonstration of the feasibility of diamond mechanosynthesis (primary nanorobot building material).

- **Pristine Stem Cell:** Clinically demonstrated repopulation of pristine stem cells to treat or prevent diseases.

- **Signals Therapeutics:** Determined whether systemic rejuvenation is possible on aged mice using signaling factors.

- **Targeted Peptides:** Developed anti-aging peptides to regulate specific aging genes.
PHASE II - Year 7 Milestones

• **Genome Reengineering:** Enhanced chromosomes to eliminate the majority of the aging problem.

• **AGI:** Proof of concept of AGI.

• **Nanomedicine:** Theoretical and experimental demonstration of the feasibility of fabricating small nanoparts and simple diamondoid molecular machinery such as rods, joints, bearings, gears, and pumps.

• **Primary Milestone:** Solved the majority of the genome related aging problem. Cells are now up to 50% protected against aging and disease.
PHASE III - Year 14 Milestones

- **Genome Reengineering:** Enhanced chromosomes for nearly 100% protection (but not reversal) against aging and most diseases.

- **AGI:** Mature AGI capability.

- **Nanomedicine:** Theoretical and experimental demonstration of the feasibility of assembling diamondoid molecular machine components into complex nanomechanical systems. Construction of the first working diamondoid nanofactory.

- **SENS:** Demonstrated ability to repair most aging damage (reverse aging) in a mouse.

- **Primary Milestones:** Genome engineering keeps human bodies from aging and shields them from disease. More than one year added to remaining expected lifespans every calendar year.
PHASE IV - Year 21 Milestones

- **Nanomedicine:** Ability to repair every cell in mammals, thus curing most if not all diseases, repairing most if not all injuries, and reversing aging.

- **SENS:** Demonstrated ability to repair aging damage in mammals.

- **Primary Milestone:** Complete control over biology and aging.

 - **NOTE:** Reversing aging could be delayed by at least 15 years without funding and oversight management.
Projected Revenue Timeframes

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome Reengineering</td>
<td></td>
</tr>
<tr>
<td>AGI #1</td>
<td></td>
</tr>
<tr>
<td>AGI #2</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>Genomics #1</td>
<td></td>
</tr>
<tr>
<td>Nanomedicine</td>
<td></td>
</tr>
<tr>
<td>Genomics #2</td>
<td></td>
</tr>
<tr>
<td>Pristine Stem Cell</td>
<td></td>
</tr>
<tr>
<td>Signals Therapeutic</td>
<td></td>
</tr>
<tr>
<td>Targeted Peptides</td>
<td></td>
</tr>
<tr>
<td>SENS</td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

Revenue (blue)
Positive Cash Flow (green)
Hypothetical Technology Mix

In $millions

<table>
<thead>
<tr>
<th>Deals</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome Reengineering</td>
<td>2.00</td>
<td>5.00</td>
<td>8.00</td>
<td>10.00</td>
<td>15.00</td>
<td>25.00</td>
<td>35.00</td>
<td>50.00</td>
</tr>
<tr>
<td>AGI #1</td>
<td>1.00</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGI #2</td>
<td>4.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td>1.20</td>
<td>3.30</td>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genomics #1</td>
<td>3.90</td>
<td>5.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanomedicine</td>
<td>2.00</td>
<td>2.00</td>
<td>5.00</td>
<td>9.00</td>
<td>15.00</td>
<td>26.00</td>
<td>46.00</td>
<td>46.00</td>
</tr>
<tr>
<td>Genomics #2</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine Stem Cell</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signals Therapeutic</td>
<td>1.40</td>
<td>2.00</td>
<td>2.50</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted Peptides</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS*</td>
<td>5.00</td>
<td>5.00</td>
<td>7.50</td>
<td>7.50</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>TBD</td>
<td>0.00</td>
<td>1.00</td>
<td>5.00</td>
<td>7.50</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Totals in Millions</td>
<td>24.50</td>
<td>35.20</td>
<td>34.70</td>
<td>36.50</td>
<td>50.00</td>
<td>71.00</td>
<td>101.00</td>
<td>116.00</td>
</tr>
</tbody>
</table>
Hypothetical Technology Mix (Cont.)

<table>
<thead>
<tr>
<th>Deals</th>
<th>Year 9</th>
<th>Year 10</th>
<th>Year 11</th>
<th>Year 12</th>
<th>Year 13</th>
<th>Year 14</th>
<th>Year 15</th>
<th>Year 16</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome Reengineering</td>
<td>70.00</td>
<td>80.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td>800.00</td>
</tr>
<tr>
<td>AGI #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>AGI #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.00</td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.70</td>
</tr>
<tr>
<td>Genomics #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.80</td>
</tr>
<tr>
<td>Nanomedicine</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
<td>90.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>701.00</td>
</tr>
<tr>
<td>Genomics #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>Pristine Stem Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>Signals Therapeutic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.40</td>
</tr>
<tr>
<td>Targeted Peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>SENS*</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85.00</td>
</tr>
<tr>
<td>TBD</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.50</td>
</tr>
<tr>
<td>Totals in Millions</td>
<td>130.00</td>
<td>140.00</td>
<td>140.00</td>
<td>140.00</td>
<td>190.00</td>
<td>200.00</td>
<td>200.00</td>
<td>100.00</td>
<td>1708.90</td>
</tr>
</tbody>
</table>

NOTE: This chart does not factor in considerable anticipated revenue during the life of this project and beyond.

Total SENS cost will be approx. $1 billion. Balance of $915 million expected to come from many outside sources including Methuselah Foundation. MaxLife plans to fund SENS for-profit investments referred from Methuselah Foundation.
When entrepreneur, author and investor Robert Ringer was asked:

“In order of importance, what would you say are the three most essential rules when it comes to making money?” Without hesitation, he blurted out:

Rule No. 1: Stay alive
Rule No. 2: Stay healthy
Rule No. 3: Stop losing money

Keep front and center in your mind that what I’m talking about here are Rules No. 1 & 2 for making money:

Staying Alive and Staying Healthy

Don’t make the mistake of ignoring or waving aside these fundamental steps just because they are so obvious.
Why You Should Participate

Many Popular Investments May be Ruining Our Health and Shortening Our Lives:

- Fast Foods
- Processed Foods
- Alcoholic and Soft Drinks
- Tobacco

Doesn’t it make Sense to Commit a Portion of Your Portfolio to Investments that Cure Diseases, Promote Wellness and Extend Healthy Life?
MaxLife offers a unique investment opportunity to lead the emerging trillion-dollar industry of Anti-Aging and Longevity therapies and products.

We will provide investors with potentially life-saving reports of the medical breakthroughs coming out of our organization.

Insiders get the chance to participate in trials, pre-distribution samples, etc. to help our partners be among the first to live long and healthy lives.
Summary

Opportunity to:

- Help save many of the 100,000 human lives lost to aging every day.
- Bring health and prosperity to the world.
- Personally benefit from extreme health and longevity products and technologies long before the general public.
- Be the leader in an emerging trillion dollar industry.
Manhattan Beach Project

Preserve Life… Our Most Precious Natural Resource

Manhattan Beach, California
Maximum Life Foundation. 949-706-2468
www.MaxLife.org